JOCS

The aim of the Comprehensive Surgery is to publish original research articles of the highest scientific and clinical value at the international level in all surgical fields.

EndNote Style
Index
Original Article
Construction of three-dimensional cartilage autograft and evaluation of the superiority of interperichondrial implantation
Aims: This study aimed to develop a three-dimensional (3D) cartilage autograft using diced cartilage and fibrin tissue glue and to compare the outcomes of interperichondrial implantation versus subcutaneous implantation in terms of graft viability, biomechanical properties, and histopathological characteristics.
Methods: Eleven albino rabbits underwent auricular cartilage harvesting, with a 3 × 2 cm segment dissected bilaterally. After dicing, the cartilage fragments were combined with fibrin tissue glue and molded into two 3D dorsal nasal grafts. One graft was implanted into the interperichondrial pocket of the right ear, and the other was placed subcutaneously in the right dorsal region. Two control sites were created: subcutaneous fibrin-only implantation on the left dorsal region and an empty interperichondrial pocket on the left ear. The rabbits were sacrificed at eight weeks, and the grafts were evaluated macroscopically, physically, and histopathologically.
Results: Two animals were excluded due to graft loss from flap necrosis. In the remaining rabbits, the interperichondrial group exhibited superior shape retention, less volume loss, and higher elasticity compared to the subcutaneous group (p < 0.05). Histopathological assessment showed significantly greater chondrocyte viability (p < 0.05) and new cartilage formation (p < 0.05) in the interperichondrial group, coupled with lower vascularization (p < 0.05) and reduced fibrosis (p < 0.05). By contrast, the subcutaneous group exhibited prominent vascularization, dense fibrous encapsulation, and more pronounced shape and volume loss. No significant intergroup differences were observed for fibrin residue or ossification (p > 0.05). The control grafts (fibrin-only and empty interperichondrial sites) demonstrated no cartilage formation.
Conclusion: Diced cartilage grafts combined with fibrin tissue glue are better supported in the interperichondrial environment than in the subcutaneous tissue. Interperichondrial implantation not only preserves graft shape and volume but also enhances chondrocyte viability and cartilage regeneration, emphasizing its potential as a clinically valuable strategy in reconstructive cartilage grafting.


1. Huey DJ, Hu JC, Athanasiou KA. Unlike bone, cartilage regeneration remains elusive. Science. 2012;338(6109):917-921. doi:10.1126/science. 1222454
2. Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med. 1994;331(14):889-895. doi: 10.1056/NEJM199410063311401
3. Ozkan A, Topkara A, Akbulut M, Ozcan RH. Survival of minced cartilage grafts with comparison surgicel (R) original and fibrillar. Aesthetic Plast Surg. 2016;40(4):602-612. doi:10.1007/s00266-016-0661-6
4. Vinatier C, Mrugala D, Jorgensen C, Guicheux J, Noel D. Cartilage engineering: a crucial combination of cells, biomaterials and biofactors. Trends Biotechnol. 2009;27(5):307-314. doi:10.1016/j.tibtech.2009.02.005
5. Chu YY, Hikita A, Asawa Y, Hoshi K. Advancements in chondrocyte 3-dimensional embedded culture: implications for tissue engineering and regenerative medicine. Biomed J. 2024:100786. doi:10.1016/j.bj. 2024.100786
6. Grande DA, Breitbart AS, Mason J, Paulino C, Laser J, Schwartz RE. Cartilage tissue engineering: current limitations and solutions. Clin Orthop Relat Res. 1999;(367 Suppl):S176-S185. doi:10.1097/00003086-199910001-00019
7. Jeyaraman M, Jeyaraman N, Nallakumarasamy A, Ramasubramanian S, Yadav S. Critical challenges and frontiers in cartilage tissue engineering. Cureus. 2024;16(1):e53095. doi:10.7759/cureus.53095
8. Lei Y, Peng J, Dai Z, et al. Articular cartilage fragmentation improves chondrocyte migration by upregulating membrane type 1 matrix metalloprotease. Cartilage. 2021;13(2_suppl):1054S-1063S. doi:10.1177/ 19476035211035435
9. Tsuyuguchi Y, Nakasa T, Ishikawa M, et al. The benefit of minced cartilage over isolated chondrocytes in atelocollagen gel on chondrocyte proliferation and migration. Cartilage. 2021;12(1):93-101. doi:10. 1177/1947603518805205
10. Gvaramia D, Kern J, Jakob Y, Zenobi-Wong M, Rotter N. Regenerative potential of perichondrium: a tissue engineering perspective. Tissue Eng Part B Rev. 2022;28(3):531-541. doi:10.1089/ten.TEB.2021.0054
11. Colnot C, Lu C, Hu D, Helms JA. Distinguishing the contributions of the perichondrium, cartilage, and vascular endothelium to skeletal development. Dev Biol. 2004;269(1):55-69. doi:10.1016/j.ydbio.2004.01. 011
12. Amiel D, Coutts RD, Abel M, Stewart W, Harwood F, Akeson WH. Rib perichondrial grafts for the repair of full-thickness articular-cartilage defects. A morphological and biochemical study in rabbits. J Bone Joint Surg Am. 1985;67(6):911-920.
13. ten Koppel PG, van Osch GJ, Verwoerd CD, Verwoerd-Verhoef HL. A new in vivo model for testing cartilage grafts and biomaterials: the &lsquo;rabbit pinna punch-hole&rsquo; model. Biomaterials. 2001;22(11):1407-1414. doi:10.1016/s0142-9612(00)00298-2
14. Hunziker EB. Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects. Osteoarthritis Cartilage. 2002;10(6):432-463. doi:10.1053/joca.2002.0801
15. Chung C, Burdick JA. Engineering cartilage tissue. Adv Drug Deliv Rev. 2008;60(2):243-262. doi:10.1016/j.addr.2007.08.027
16. Kock L, van Donkelaar CC, Ito K. Tissue engineering of functional articular cartilage: the current status. Cell Tissue Res. 2012;347(3):613-627. doi:10.1007/s00441-011-1243-1
17. Saadeh PB, Brent B, Mehrara BJ, et al. Human cartilage engineering: chondrocyte extraction, proliferation, and characterization for construct development. Ann Plast Surg. 1999;42(5):509-513.
18. Peretti GM, Randolph MA, Zaporojan V, et al. A biomechanical analysis of an engineered cell-scaffold implant for cartilage repair. Ann Plast Surg. 2001;46(5):533-537. doi:10.1097/00000637-200105000-00013
19. Warren SM, Longaker MT. New directions in plastic surgery research. Clin Plast Surg. 2001;28(4):719-730.
20. Schipani E, Wu C, Rankin EB, Giaccia AJ. Regulation of bone marrow angiogenesis by osteoblasts during bone development and homeostasis. Front Endocrinol (Lausanne). 2013;4:85. doi:10.3389/fendo.2013.00085
21. Bouwmeester PS, Kuijer R, Homminga GN, Bulstra SK, Geesink RG. A retrospective analysis of two independent prospective cartilage repair studies: autogenous perichondrial grafting versus subchondral drilling 10 years post-surgery. J Orthop Res. 2002;20(2):267-273. doi:10.1016/S0736-0266(01)00099-7
22. Gvaramia D, Kern J, Jakob Y, Zenobi-Wong M, Rotter N. Regenerative potential of perichondrium: a tissue engineering perspective. Tissue Eng Part B Rev. 2022;28(3):531-541. doi:10.1089/ten.TEB.2021.0054
23. Duynstee ML, Verwoerd-Verhoef HL, Verwoerd CD, Van Osch GJ. The dual role of perichondrium in cartilage wound healing. Plast Reconstr Surg. 2002;110(4):1073-1079. doi:10.1097/01.PRS.0000020991.10201.6C
24. Chhapola S, Matta I. Cartilage-perichondrium: an ideal graft material? Indian J Otolaryngol Head Neck Surg. 2012;64(3):208-213. doi:10.1007/s12070-011-0306-7
25. Gerritsen M. Problems associated with subcutaneously implanted glucose sensors. Diabetes Care. 2000;23(2):143-145. doi:10.2337/diacare. 23.2.143
26. Kemaloglu CA, Tekin Y. A comparison of diced cartilage grafts wrapped in perichondrium versus fascia. Aesthetic Plast Surg. 2014;38(6):1164-1168. doi:10.1007/s00266-014-0403-6
27. Miyazaki T, Kobayashi S, Takeno K, Yayama T, Meir A, Baba H. Lidocaine cytotoxicity to the bovine articular chondrocytes in vitro: changes in cell viability and proteoglycan metabolism. Knee Surg Sports Traumatol Arthrosc. 2011;19(7):1198-1205. doi:10.1007/s00167-010-1369-9
28. Bujia J. Determination of the viability of crushed cartilage grafts: clinical implications for wound healing in nasal surgery. Ann Plast Surg. 1994;32(3):261-265.
29. Ozgenel GY. The influence of human amniotic fluid on the potential of rabbit ear perichondrial flaps to form cartilage tissue. Br J Plast Surg. 2002;55(3):246-250. doi:10.1054/bjps.2002.3811
30. Homminga GN, van der Linden TJ, Terwindt-Rouwenhorst EA, Drukker J. Repair of articular defects by perichondrial grafts. Experiments in the rabbit. Acta Orthop Scand. 1989;60(3):326-329. doi: 10.3109/17453678909149287
31. Duncan MJ, Thomson HG, Mancer JF. Free cartilage grafts: the role of perichondrium. Plast Reconstr Surg. 1984;73(6):916-923. doi:10.1097/ 00006534-198406000-00010
32. ten Koppel PG, van Osch GJ, Verwoerd CD, Verwoerd-Verhoef HL. Efficacy of perichondrium and a trabecular demineralized bone matrix for generating cartilage. Plast Reconstr Surg. 1998;102(6):2012-2020. doi: 10.1097/00006534-199811000-00031
33. LaPrade RF, Bursch LS, Olson EJ, Havlas V, Carlson CS. Histologic and immunohistochemical characteristics of failed articular cartilage resurfacing procedures for osteochondritis of the knee: a case series. Am J Sports Med. 2008;36(2):360-368. doi:10.1177/0363546507308359
34. Miyanaga T, Yoshitomi Y, Miyanaga A. Perifascial areolar tissue graft promotes angiogenesis and wound healing in an exposed ischemic component rabbit model. PLoS One. 2024;19(2):e0298971. doi:10.1371/journal.pone.0298971
35. Medeiros Da Cunha CM, Perugini V, Bernegger P, et al. Vascular endothelial growth factor sequestration enhances in vivo cartilage formation. Int J Mol Sci. 2017;18(11):2478. doi:10.3390/ijms18112478
36. Ma Z, Shou K, Li Z, Jian C, Qi B, Yu A. Negative pressure wound therapy promotes vessel destabilization and maturation at various stages of wound healing and thus influences wound prognosis. Exp Ther Med. 2016;11(4):1307-1317. doi:10.3892/etm.2016.3083
37. Meinhart J, Fussenegger M, Hobling W. Stabilization of fibrin-chondrocyte constructs for cartilage reconstruction. Ann Plast Surg. 1999;42(6):673-678. doi:10.1097/00000637-199906000-00016
38. Ting V, Sims CD, Brecht LE, et al. In vitro prefabrication of human cartilage shapes using fibrin glue and human chondrocytes. Ann Plast Surg. 1998;40(4):413-420. doi:10.1097/00000637-199804000-00016
39. Kaplonyi G, Zimmerman I, Frenyo AD, Farkas T, Nemes G. The use of fibrin adhesive in the repair of chondral and osteochondral injuries. Injury. 1988;19(4):267-272. doi:10.1016/0020-1383(88)90043-5
40. Singh K, Moyer H, Williams JK, Schwartz Z, Boyan BD. Fibrin glue: a scaffold for cellular-based therapy in a critical-sized defect. Ann Plast Surg. 2011;66(3):301-305. doi:10.1097/SAP.0b013e3181fc0507
41. Rojas-Murillo JA, Simental-Mend&iacute;a MA, Moncada-Saucedo NK, et al. Physical, mechanical, and biological properties of fibrin scaffolds for cartilage repair. Int J Mol Sci. 2022;23(17):9879. doi:10.3390/ijms 23179879
42. Liao J, Chen Y, Chen J, et al. Auricle shaping using 3D printing and autologous diced cartilage. Laryngoscope. 2019;129(11):2467-2474. doi: 10.1002/lary.27752
43. Obert L, Loisel F, Gindraux F, Tropet Y, Lepage D. Rib cartilage grafting in upper limb surgery: an overview. SICOT J. 2015;1:13. doi:10.1051/sicotj/2015003
44. Akkina SR, Most SP. The effect of perichondrium on cartilage graft properties. Curr Opin Otolaryngol Head Neck Surg. 2022;30(4):215-218. doi:10.1097/MOO.0000000000000812
Volume 3, Issue 1, 2025
Page : 15-21
_Footer